Hub Management Interface

Introduction e 8-3
Hub Hardware 8-4
Token-Ring Design Considerations 8-5

Hub Management Software 8-6
Network Management Protocol Agent 8-7

Hub Management NLM 8-7

Hub Support Layer 8-7
HUBCON Utility 8-7

Hub Management MLID 8-8

Hub Management Objects 8-8
10BaseT Object Packages 8-9
BasicControl 8-9
Performance Monitoring 8-9
Address Tracking 8-10
Novell Extensions 8-10
Token-Ring Object Packages 8-11
BasicControl 8-11
Performance Monitoring 8-11
Address Tracking 8-12
Object Identifiers 8-14
10BaseT Object Identifiers 8-15
BasicControl 8-15
Performance Monitoring 8-17
Address Tracking 8-18
Novell Extensions 8-19
Token-Ring Object Identifiers 8-21
BasicControl 8-21
Information Tables, 8-23
Hub Information Table 8-24
Group Information Table 8-28
Hub Management MLIDs 8-30
Implementing HMI Support in MLIDs 8-30
Implementing HMI Only 8-31
Managing External Hubs 8-31
HMI Mode Selectionu..... 8-32
Command Processing, 8-33
Hub Command ECB 8-33
Hub Command Sequence 8-36
Design Tipsand Notes 8-36

Version 1.00 8—-1

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Notification Processing 8-37
Notification Types, 8-37
Health Change Notification 8-37

Group Change Notification 8-37

Reset Notification 8-38
LoopbackRecovery Notification 8-38
SourceAddressChange 8-38
Notification Generation Sequence 8-38
Notification ECB 8-39
Hub Management Pseudocode 8-41
DriverInit 8-41
DriverISR or DriverPoll 8-41
DriverManagement 8-42
References e 8-44

8-2 Version 1.00

Chapter 8 +« Hub Management Interface

Introduction

The Hub Management Interface (HMI) specifies how hub management
functions are integrated into the ODI model. Novell has currently
defined an HMI specification for Ethernet 10BaseT repeaters (based on
IEEE’s specification for 10BaseT repeater management), and an HMI
specification for Token-Ring concentrator management. The HMI
architecture is extensible and allows for additional hub types in the
future.

There are two possible ways to implement HMI functions in ODI
drivers. The developer may implement the HMI capabilities described
in this chapter as an additional feature of a standard Multiple Link
Interface Driver (MLID), or a driver could be developed that is limited
to providing only those functions required by the HMI. In most cases,
hub adapters also incorporate a network interface, so a fully functional
MLID with management support is the common solution.

The HMI specification allows drivers to manage hubs resident in the
server or external as Figure 8.1 shows.

wn

erver

]
N

Remote Link

H -\
Client Client

Client

(=
w

Client

] Client

Client

Client

Figure 8.1 External and Internal Hubs

Version 1.00

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Hub Hardware

An internal hub typically consists of one or more adapters. There may
be a master and one or more slave adapters. Each adapter has several
ports to which various networked devices are attached. The set of ports
on a single adapter is typically called a group. One or more groups
operating together constitutes a hub. The minimum configuration for
a hub would be a single adapter with a group of ports, normally
containing a network controller. A more complex hub would contain
several groups (adapters) as shown below in Figure 8.2.

In this chapter, group signifies the smallest field replaceable hardware
unit -- the adapter. Hub refers to a manageable wiring concentrator
handling any media type, repeater refers to a 10BaseT repeater, and
concentrator refers to a Token-Ring concentrator.

SERVER [

ADAPTER 1 =l
(GROUP 1) % FORIS

HUB1 —

ADAPTER 2
(GROUP 2)

HUB2 — ! ADAPTER 3
‘ (GROUP 1)

Figure 8.2 Server-Resident Hubs Diagram

In addition to adapters installed in the server, an external hub may
also be managed using the HMI. It is possible that an external hub
may be linked to the server via a serial port. Special consideration
must be given to implementing the HMI functions in the driver if serial
port communications are involved so that the driver’s operation does not
adversely affect the server’s performance. Refer to the Managing
External Hubs section later in this chapter for additional information.

Manageable hub hardware will have some counters and capabilities
that the HMI software must access and use. Other HMI-required
features may not be provided by the hardware. If the hardware does
not explicitly implement some required feature, that feature must be
implemented by the software.

Version 1.00

Chapter 8 +« Hub Management Interface

Token-Ring Design Considerations

In addition to the HMI functionality described in this chapter, a Token-
Ring hub must adhere to the following requirements.

1) The local host port is always the upstream neighbor of the first
active port on the hub adapter.

2) The directional flow of the token in the ring must start from the
lowest numbered port up to the highest numbered port. This would
mean that if port numbers 3, 4, and 5 are in the ring, port number
3 is the upstream neighbor of port 4, while port number 4 is the
upstream neighbor of port 5.

This sequencing holds true between successive adapters as well.
The directional flow must start from the lowest numbered adapter
up to the highest numbered adapter in the ring.

3) Any external ports in the ring must follow the last active port in the
last adapter of the hub. Figure 8.3 shows an example of a network
with two hub adapters along with external ports connected via a
ring-in or a ring-out port.

Al . P1
Al .P2

ADAPTER 1
HOST MASTER

A1 .Pn

A2 . P1

ADAPTER 2 A2 . P2

SLAVE

A2 .Pn

Figure 8.3 Token-Ring configuration of 2 hubs, connected to external ports.

The ring map for this system must conform with the following

sequence:
~—— HOST, Al(Pl...Pn), A2(Pl...Pn), EXT(Pl...Pn) —T
HOST = local host port
A# = adapter number
P# = port number
EXT-P# = external port

Version 1.00

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

4) The MAC address of the file server must hold a static position,
relative to other ports on the master adapter, reported in the HIT
table.

5) Token Ring hubs together can be daisy chained to form a ring.
However, they are not expected to form a hierarchical ring. If such
implementation is adopted, accuracy of the ring information cannot
be guaranteed.

Hub Management Software

Hub management within the ODI model consists of a Hub Management
NLM that interfaces with network management agents such as SNMP;
the Hub Support Layer (HSL) that provides basic hub management
support services; and MLIDs that contain hub management functions
that access the hardware. Figure 8.4 shows the hub management

interface elements introduced in this chapter in relation to the rest of
the ODI model.

NETWARE OPERATING SYSTEM SERVICES N erT
: MANAGEMENT
. OMP 1| NwMA SNMP phrEE S
——————————————————————— AGENTS
HUB
IPX TCP/IP HUBSNMP HUBCON MANAGEMENT
NLMs
HUB SUPPORT LAYER
LINK SUPPORT LAYER
EXTENDED MLID (ODI DRIVER + HMI) SOFTWARE
ISA, EISA, OR MCA BUS ‘ HARDWARE
| ETHERNET ‘] TOKEN-RING ‘] ‘

Figure 8.4 Hub Management in the ODI Model

When the network management protocol agent receives a hub
management request it routes the request to the hub management
NLM. The NLM places the request in a Hub Command ECB and
passes it via the HSL / LSL to the appropriate driver. The driver
handles the request and returns the ECB.

The majority of communications between the management NLM and
the HMI functions in the driver are initiated by the management NLM
in the form of hub management requests. The driver generates only a
few specific notification messages that it passes up to the HSL. The
HSL passes the messages on to the appropriate management NLMs.

Version 1.00

Chapter 8 +« Hub Management Interface

Network Management Protocol Agent

The network management protocol agent works with protocol stacks
and upper layer applications. It is responsible for processing network
management requests from these sources or it may generate
management requests itself. The management agent interprets and
sends the requests and retrieves requested management data.
Examples of management agents are: Simple Network Management
Protocol (SNMP), NetWare Management Agent (NWMA), and Common
Management Interface Protocol (CMIP).

Hub Management NLM

The hub management NLM (shown in Figure 8.4 as HUBSNMP) is the
interface between a server-resident network management protocol agent
and the HSL. There may be more than one hub management NLM
present in the server at one time. Each one interfaces to a single
network management protocol agent and is responsible for providing
access to a specific set of management objects to that agent. There may
be multiple management agents resident to support various protocols.
The NLM formulates requests into Hub Command Event Control Blocks
and passes them to the HSL.

Hub Support Layer

The Hub Support Layer (shown in Figure 8.4) acts as a central
management node in the hub management system. It performs global
maintenance of hub managed information in the form of externalized
services available to other hub management NLMs, as well as
automatic services implicitly performed to maintain integrity of the
hubs. External services include sending messages down to the LSL or
routing notification messages up to management NLMs. The automatic
services include preservation of port states over power outages.

HUBCON Utility

The Novell-provided utility, HUBCON, is a management NLM that
allows the user to control and monitor hubs from the server console.
This utility performs local (only for the server it is installed on)
management functions, interfaces with the HSL, and displays
management information on the console. HUBCON may be used
remotely via the NetWare Remote Management Facility (RMF), or the
XCONSOLE utility.

Version 1.00

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Hub Management MLID

The HMI function in the driver is responsible for carrying out hub
management requests. Requests require the driver to access hardware
or manipulate a software implemented feature. Management requests
are either GET or SET functions. GET functions request the values of
specific statistics or other registers. SET functions place specific values
in control variables or registers, or cause an action, such as a reset or
self-test, to occur.

A driver with management support must also indicate any change in
the operability or configuration of the hardware by allocating a hub
notification ECB, filling it in, and returning it to the hub management
NLM. Event types that require notification include: hub health
changes, group changes, and hardware resets or failures.

Hub Management Objects

Managed objects are state variables, counters, registers, or descriptive
data strings used in hub management. IEEE and ISO specifications
define managed objects in groupings called packages.

There are four packages of managed objects defined in this chapter.
The first three are packages defined in the IEEE layer management
specification: Basic Control, Performance Monitoring, and Address
Tracking. In addition, Novell has defined an additional management
object package, the Novell Extension package.

The hub management portion of the driver must map the management
features of the hardware to the managed objects defined by the HMI
specification. Some hardware features will map directly to HMI-defined
objects. Other hardware features may not be defined by the HMI
specification, or the hardware may not support some capabilities
required by the HMI specification.

Developers must support all objects in all packages defined in this
chapter in order to claim full compliance to the HMI specification.
However, only the objects in the Basic Control package are mandatory.
You may choose to implement a subset of the management packages
(i.e. Basic Control and Performance Management only), but in order to
claim compliance to the HMI specification for a particular package, all
objects in that package must be supported. If the hardware does not
explicitly implement some required feature, the driver must implement
that managed object in software or return a "not supported" command
status for that object. Simply returning a zero value for unsupported
objects is not sufficient.

Version 1.00

Chapter 8 +« Hub Management Interface

10BaseT Object Packages

There are four packages of managed objects defined by the HMI
specification for Ethernet 10BaseT hubs. The first three are packages
defined in the IEEE layer management specification: Basic Control,
Performance Monitoring, and Address Tracking. In addition, Novell has
defined an additional management object package, the Novell Extension
package.

Basic Control (defined by IEEE)

* RepeaterID

* RepeaterGroupCapacity
* RepeaterHealth

¢ RepeaterHealthState

* RepeaterHealthText

¢ RepeaterHealthData

* RepeaterReset

* RepeaterResetAction

¢ ExecuteNonDisruptiveSelfTestAction
¢ GrouplD

* GroupPortCapacity

* GroupMap

* GroupMapChange

e PortMap !

¢ PortMapChange !

¢ PortAdminState >

¢ PortAdminControl

¢ AutoPartitionState

Performance Monitoring (defined by IEEE)

* ReadableFrames - reported per port

* ReadableOctets - reported per port

* FrameCheckSequenceErrors - reported per port

¢ AlignmentErrors - reported per port

* FramesTooLong - reported per port

¢ ShortEvents - reported per port

* Runts - reported per port

¢ Collisions - reported per port and hub
¢ LateEvents - reported per port

* VeryLongEvents - reported per port and hub 2
¢ DataRateMismatches - reported per port

* AutoPartitions - reported per port

Version 1.00 8-9

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Address Tracking (defined by IEEE)

¢ LastSourceAddress
* SourceAddressChanges

Novell Extensions

¢ PortLinkState

¢ RepeaterTotalOctets

® PortType

¢ StationPortAddress

¢ PortReceiveControl

¢ PortTransmitControl

e AutoDisable

* NotifySourceAddrChange

" Note: These objects, although specified by IEEE, are not required by the

HMI specification.

2Note: The IEEE specification requires that the value of this object be
maintained when the power is off. The HSL saves the new port
state whenever it changes, then restores the last saved state after
the driver and HSL are reloaded. Before the state is restored,
during initial booting, the port states are determined by the power-
up state of the hardware. The power-up state is determined by the

hardware manufacturer.

Installations that have disabled ports for security reasons may find
power up with all ports enabled unacceptable. Other installations
may reject having the ports power up in the disabled state because
of the inconvenience. The optimal situation is to have each port
power up in the state that it was last configured. Hub designers
should carefully consider these issues when developing their

product.

® Note: The veryLongEvents object replaced the repeaterMJLPs object
defined by the IEEE in previous drafts of its specification. Novell
has chosen to add this new object definition to the HMI as
PortVeryLongEvents in addition to keeping the original object as

RepeaterVeryLongEvents.

8-10

Version 1.00

Chapter 8 +« Hub Management Interface

Token-Ring Object Packages

The HMI specification for Token-Ring hubs requires very limited
functionality from the ODI driver. The driver must implement only the
Basic Control object package. The additional Performance Monitoring
and Address Tracking information necessary for managing Token-Ring
hubs is collected and maintained by the Hub Support Layer (HSL). The
driver need only enable the Ring Error Monitor and Configuration
Report Server so the HSL can receive and collect the Performance
Monitoring and Address Tracking information.

Basic Control

¢ ConcentratorID

* ConcentratorGroupCapacity
* ConcentratorHealth

¢ ConcentratorHealthState
¢ ConcentratorHealthText
* ConcentratorHealthData
¢ ConcentratorReset

* ConcentratorResetAction
¢ ConcentratorType

* ConcentratorSpeed

¢ ExecuteNonDisruptiveSelfTestAction
* GrouplD

* GroupPortCapacity

¢ GroupMap

* GroupMapChange

* GroupCableType

e PortMap !

¢ PortMapChange !

¢ PortAdminState >

¢ PortStatus

* PortType

Performance Monitoring

This information is maintained by the HSL for all HMI ports as well as
ports external to the hub but on the ring.

® Line Errors - reported per port
* Burst Errors - reported per port
¢ AC Errors - reported per port
* Abort Transmission Errors - reported per port
* Internal Errors - reported per port
® Duplicate Addresses - reported per port and ring
* Receive Congestions - reported per port and ring
* Beacons Transmitted - reported per port and ring

Version 1.00

8-11

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

* Set Recovery - reported per port and ring
* Ring Signal Loss - reported per port and ring
* Monitor Contention Errors - reported per port and ring
* Frequency Errors - reported per ring
* Lost Frame Errors - reported per ring
* Frame Copied Errors - reported per ring
* Token Errors - reported per ring
¢ Active Monitor Errors - reported per ring
® Duplicate Monitors - reported per ring
¢ Ring Poll Failures - reported per ring

Address Tracking
This information is collected and maintained by the HSL.

¢ Active Monitor

* Active Monitor Changes

¢ Last Upstream Address

¢ Upstream Address Changes
* Last Source Address

¢ Source Address Changes

In the Token-Ring HMI, the hub support layer must receive both HMI
management event control blocks (ECBs) as well as MAC frames from
the driver. Accordingly, the hub support layer first registers with and
binds to the driver as a protocol stack using the "HUBMGR" protocol
ID. It then registers itself as a default protocol stack in order to receive
MAC frames.

It is the responsibility of the driver to enable the Ring Error Monitor
and the Configuration Report Server so the HSL can receive the
corresponding MAC frames to collect the Performance Monitoring and
Address Tracking information. These functions are normally enabled
via a protocol stack by calling the driver control procedure Driver-
MulticastChange, passing the functional address C00000000018h.
However, in the case of HMI, the driver is responsible for turning the
appropriate functional address bits on.

All request packets sent to the driver are delivered via the raw send
facility. When sending a MAC frame to the driver, the hub support
layer includes the entire frame starting from the AC bits. Similarly,
when receiving, the hub support layer expects the entire MAC frame.

8-12

Version 1.00

Chapter 8 +« Hub Management Interface

An HMI driver may send any of the legal MAC frames to the HSL. The
HSL ignores any MAC frames that it does not require. However, to
ensure proper operation, the following MAC frames must be sent to the
HSL via the LSL.

* Report Beacon Frame

* Active Monitor Present (optional)

¢ Standby Monitor Present (optional)
* Report New Monitor

* Report SUA Change

* Report Ring Poll Failure

* Report Monitor Error

* Report Error

* Report Station Address

In addition, the driver must be able to accept and transmit the
following MAC frame sent to it by the hub support layer.

* Request Station Address

Version 1.00 8-13

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Object Identifiers

Each set of object identifiers defined for the HMI interface belongs to
a specific domain. The domain together with specific object identifier
values uniquely identify any given object. The domain is a 4-byte
character string (without a null-terminating character) that is passed
with the command and notification ECBs.

In the following sections, all object identifiers defined by the HMI
specification for 10BaseT repeaters belong to the "NVL1" domain. All
object identifiers defined by the HMI specification for Token-Ring
concentrators belong to the "NVL2" domain.

The tables in this section indicate specific values that the driver must
use to define managed objects in order to support the HMI specification.

The tables include:

* Object Name

* Object ID - a unique value associated with the object name and used
to access the object. The driver must define the object to have the
ID value indicated in this table.

* Object Length (in bytes)

¢ The possible GET or SET commands for the object. Objects that are
counters only support GET commands. The action objects support

GET and SET commands as shown in the tables.

* Object Management Class - Indicates whether the object must be
managed on a per hub, per group, or per port basis.

8-14

Version 1.00

Chapter 8 +« Hub Management Interface

10BaseT Object Identifiers

Note:

Each set of object identifiers defined in the HMI specification for
10BaseT hubs belongs to the "NVL1" domain. The domain together
with the specific object ID values indicated in the following tables,
uniquely identifies any given object.

The first table contains those managed objects that are required by the
Basic Control package (and are not defined in the information tables
described later in this chapter). The remaining tables contain those
managed objects defined for Performance Monitoring, Address Tracking,
and the Novell Extension packages. All counter objects described in
these tables are 32 bits in length.

Basic Control

Object ID Length | Get/Set Class
InfoTablePointer 0 4 Get Hub
ResetHubAction 1 4 Get/Set Hub
ExecuteSelfTest1Action 2 4 Get/Set Hub
ExecuteSelfTest2Action 3 4 Get/Set Hub
PortAdminState 4 4 Get/Set Port
AutoPartitionState 5 4 Get Port

InfoTablePointer. Pointer to the Hub Information Table (HIT). A GET
command for this object always returns a pointer.

ResetHubAction. A SET request for this object should initiate a reset
of the hub system. If the reset is completed before the driver’s
management routine returns, set the ObjectValue to 1. If the reset is
still executing on return, set the value to 2. A SET command for this
object must always generate a reset notification as described later in
this chapter.

The possible values returned by a GET are:

1 - the repeater is not in the process of resetting
2 - the repeater is in the process of resetting

Normally only the reset notification would result from a SET, however,
if resetting the repeater results in a health state change, the driver
must also generate a HealthChange notification. See the appropriate
IEEE document for the reset requirements.

Version 1.00

8-15

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

ExecuteSelfTest1Action. A SET request for this object with an
ObjectValue of 2, causes the repeater to execute a non-disruptive self
test. If the self test is completed before the driver’s management
routine returns, set the ObjectValue to 1. If the self test is still
executing on return, set the value to 2. If executing the self test results
in a health state change, a HealthChange notification must be
generated as described in the notification section of this chapter. See
the appropriate IEEE document for the ExecuteNonDisruptiveSelfTest
requirements.

The possible GET values are:

1 - non-disruptive self test is not executing
2 - non-disruptive self test is executing

ExecuteSelfTest2Action. A SET request for this object with an
ObjectValue of 2, causes the repeater to execute a disruptive self test.
If the self test is completed before the driver’s management routine
returns, set the ObjectValue to 1. If the self test is still executing on
return, set the value to 2. If executing the self test results in a health
state change, a HealthChange notification must be generated as
described in the notification section of this chapter.

The possible GET values are:

1 - disruptive self test is not executing
2 - disruptive self test is executing

PortAdminState. A value indicating the current state of the port. The
possible ObjectValues for both SET and GET commands are:

1 - Disable; the port is prevented from transmitting or
receiving data.

2 - Enable; the port is not disabled. (This value must not
be interpreted to indicate the health status of the port.)

Note: The HSL will preserve the PortAdminState when the power is off
as required by the IEEE specification. The HSL saves the new port

state each time it changes, and restores the last saved state after the
driver and HSL are loaded.

AutoPartitionState. The auto partition value indicates whether the
port is currently partitioned by the hub’s auto-partition algorithm.
Typically a port is automatically partitioned if it is signalling a
continuous collision or detects some number of consecutive collisions.
The possible GET values returned are:

1 - the port is auto-partitioned
2 - the port is not auto-partitioned

8-16

Version 1.00

Chapter 8 +« Hub Management Interface

Performance Monitoring

Object ID Length | Get/Set Class
TransmitCollisions 4 Get Hub
RepeaterVeryLongEvents 4 Get Hub
PortVeryLongEvents 4 Get Port
ReadableFrames 4 Get Port
ReadableOctets 10 4 Get Port
FrameCheckSequenceErrors 11 4 Get Port
AlignmentErrors 12 4 Get Port
FramesTooLong 13 4 Get Port
ShortEvents 14 4 Get Port
Runts 15 4 Get Port
Collisions 16 4 Get Port
LateEvents 17 4 Get Port
DataRateMismatches 18 4 Get Port
AutoPartitions 19 4 Get Port

TransmitCollisions. The number of transmit collisions detected by the
repeater. This counter is incremented once for each collision detected.

RepeaterVeryLongEvents. The total number of packets received by all
ports in the repeater that were too long causing the associated ports to
enter the jabber protection condition. Other counters may also be
incremented as required.

PortVeryLongEvents. The number of packets received by the port that
were too long causing the port to enter the jabber protection condition.
Other counters may also be incremented as required.

ReadableFrames. The number of valid length frames received without
FCS errors or collisions. Does not include invalid frames of any type.

ReadableOctets. The number of octets received in the frames counted
in ReadableFrames.

FrameCheckSequenceErrors. The number of valid length frames
received with FCS errors and without Framing errors or collisions.

AlignmentErrors. The number of alignment errors detected by the
port. This counter is incremented for each valid length frame received
with both FCS AND Framing errors and without collisions. If this
counter is incremented, then do not increment the FCS error counter for
the same frame.

Version 1.00

8-17

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

FramesToolLong. The number of frames longer than 1518 bytes
(including the FCS) received by the port. All long frames should be
counted in this total, whether the FCS is correct or not. However, if
this counter is incremented, then do not increment the AlignmentErrors
or FrameCheckSequenceErrors counters.

ShortEvents. The number of short fragments received by the port. A
short fragment is a carrier event of less than 7.4 microseconds.
ShortEvents may indicate externally generated noise hits which will
cause the repeater to transmit Runts to its other ports, or propagate a
collision (which may be late) back to the transmitting DTE and
damaged frames to the rest of the network.

Runts. The number of runt fragments detected by the port. A runt is
a frame with less than 63 bytes and more than 3 bytes, including the
FCS, but not including 8 bytes of preamble. All runts should be
counted whether the FCS is correct or not.

Collisions. The number of collisions detected by the port. This
counter includes the late collisions counted in LateEvents.

LateEvents. The number of late collisions detected by the port. A late
event is a carrier event which qualifies as a collision at any time when
the "ActivityDuration" is greater than 56 microseconds. This event is
counted in both Collisions and LateEvents.

DataRateMismatches. The number of times a frame has been received
by the port with the transmission frequency (i.e. data rate) detectably
different from the specified data rate. Other counters may also be
incremented as required.

AutoPartitions. A counter of the number of times the repeater has
auto-partitioned this port. An auto-partition is caused by an excessive
number of consecutive collisions (30) or excessive duration of collision
(100 microseconds). When either of these events occur, the hub
automatically disables the port for reception. The port will be
re-enabled automatically after a single good reception from the port.
The partition status is also reset to not-partitioned after manual
disabling and re-enabling of the port.

Address Tracking

Object ID Length | Get/Set Class

LastSourceAddress 20 6 Get Port

SourceAddressChanges 21 4 Get Port
8-18 Version 1.00

Chapter 8 +« Hub Management Interface

LastSourceAddress. The source address from the last frame received
by the port that meets the criteria for the ReadableFrames object.

SourceAddressChanges. The number of times the LastSourceAddress

changes value. Only address changes for frames that meet the criteria
for the ReadableFrames object should be counted.

Novell Extensions

Object ID Length | Get/Set Class
PortLinkState 22 4 Get Port
RepeaterTotalOctets 23 4 Get Hub
PortType 24 4 Get Port
StationPortAddress 25 6 Get/Set Port
PortReceiveControl 26 4 Get/Set Port
PortTransmitControl 27 4 Get/Set Port
AutoDisable 28 4 Get/Set Port
NotifySourceAddrChange 29 4 Get/Set Port

PortLinkState. @ A value indicating the current state of the link
attached to the port. The possible values are:

1 - LinkDown, the link pulses are not being received by the port
2 - LinkUp, the link pulses are being received by the port
3 - NotApplicable, the port is an AUI or other non-10BaseT port

RepeaterTotalOctets. A value indicating the total number of bytes
repeated including 8 bytes of preamble and FCS for any packet,
whether the FCS was correct or not.

PortType. A value indicating the type of port. The possible GET
values returned are:

1 - Other 3 - Local host port
2 - Normal port 4 - AUI port

StationPortAddress. A GET request for this object returns the MAC
address set for this object. If specified, this MAC address will have a
non-zero value corresponding to the MAC address that should be
connected to the port. The value from this object is used in conjunction
with the PortReceiveControl and PortTransmitControl objects to verify
security. A SET command will change this object’s value to the

specified MAC address.

Version 1.00

8-19

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

PortReceiveControl. A SET of this object with an ObjectValue of 1
allows the port to receive any packet whether or not they are destined
to this port. A SET with an ObjectValue of 2 causes all packets
received by this port that are not destined for the port to be jammed.
A packet is destined for a port if:

a) The destination address of the packet matches the StationPort-
Address of the port.
b) The packet is a broadcast or a multicast.

A GET request returns the current state of this object as follows:

1 - PortReceiveControl is not enabled; the port can view all incoming
packets.

2 - PortReceiveControl is enabled; all packets not destined to this
port are jammed.

PortTransmitControl. A SET of this object with an ObjectValue of 1
allows the port to transmit packets to any station in the network. A
SET with an ObjectValue of 2 allows the port to transmit packets only
when the source address is the same as the StationPortAddress. If a
packet violating this condition is encountered and the AutoDisable
object is set, this port will be disabled. A GET request returns the
current state of this object as follows:

1 - PortTransmitControl is not enabled; the port can transmit to
any station in the network.

2 - PortTransmitControl is enabled; only packets with a source
address equal to the StationPortAddress will be transmitted.

AutoDisable. A SET of this object with an ObjectValue of 2 allows the
driver to automatically disable a port that has violated the condition
specified in PortTransmitControl. A SET with an ObjectValue of 1
means the driver should not automatically disable a port. A GET
request returns the current state of the AutoDisable object as follows:

1 - Port will not be auto disabled. (AutoDisable mode is off).
2 - Port can be auto disabled. (AutoDisable mode is on).

NotifySourceAddrChange. A SET of this object with an ObjectValue
of 2 enables notifications on this port whenever the last source address
for the port changes. A SET with an ObjectValue of 1 disables
notifications. A GET request returns the current state of this object as
follows:

1 - Last source address change notifications will not be transmitted
for this port.

2 - Last source address change notifications will be transmitted for
this port.

8-20 Version 1.00

Chapter 8 +« Hub Management Interface

Token-Ring Object Identifiers

Each set of object identifiers defined in the HMI specification for Token-
Ring concentrators belongs to the "NVL2" domain. The domain
combined with the specific object ID values indicated in the following
tables, uniquely identifies any given object.

The table below contains those managed objects that are required by

the Basic Control package (and are not defined in the information
tables described later in this chapter).

Basic Control

Object ID Length | Get/Set Class
InfoTablePointer 0 4 Get Hub
ResetHubAction 1 4 Get/Set Hub
ExecuteSelfTest1Action 2 4 Get/Set Hub
PortAdminState 3 4 Get/Set Port
PortStatus 4 4 Get Port
PortType 5 4 Get Port

InfoTablePointer. Pointer to the Hub Information Table (HIT). A GET
command for this object always returns a pointer to the HIT.

ResetHubAction. A SET request for this object should initiate a reset
of the hub system. If the reset is completed before the driver’s
management routine returns, set the ObjectValue to 1. If the reset is
still executing on return, set the value to 2.

The possible ObjectValues returned by a GET are:

1 - the concentrator is not in the process of resetting
2 - the concentrator is in the process of resetting

A SET command for this object must always generate a reset
notification as described later in this chapter. Normally only the reset
notification would result from a SET, however, if resetting the repeater
results in a health state change, the driver must also generate a
HealthChange notification.

Performing the reset function must not alter the normal operation of
the ring in any way.

Version 1.00

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Note:

ExecuteSelfTest1Action. A SET request for this object with an
ObjectValue of 2, causes the concentrator to execute a non-disruptive
self test. If the self test is completed before the driver’s management
routine returns, set the ObjectValue to 1. If the self test is still
executing on return, set the value to 2.

The possible GET values are:

1 - non-disruptive self test is not executing
2 - non-disruptive self test is executing

If executing the self test results in a health state change, a
HealthChange notification must be generated as described in the
notification section of this chapter.

This test is to be defined by the hardware vendor. However, performing
the self test function may not alter the normal operation of the ring in
any way.

PortAdminState. A value indicating the current state of the port. This
object can be used to enable or disable the Trunk Port Ring-In and
Ring-Out ports as well as all other regular ports. The possible
ObjectValues for both SET and GET commands are:

1 - Disable; the port is prevented from transmitting or
receiving data.

2 - Enable; the port is not disabled (This value must not
be interpreted to indicate the health status of the port.)

Note: The HSL will preserve the PortAdminState when the power is off
as required by the IEEE specification. The HSL saves the new port

state each time it changes, and restores the last saved state after the
driver and HSL are loaded.

PortStatus. A value indicating the current status of the device
attached to the port. The possible GET values returned are:

1 - Phantom current present (normal port)

2 - Phantom current not present (normal port)

3 - Internally wrapped (ring-in/ring-out port)

4 - Not internally wrapped (ring-in/ring-out port)

PortType. A value indicating the type of port. The possible GET
values returned are:

1 - Other

2 - Ring-in port

3 - Ring-out port
4 - Daisy-in port
5 - Daisy-out port
6 - Normal port

Version 1.00

Chapter 8 +« Hub Management Interface

Information Tables

Many of the managed objects described in the previous sections are
defined by the driver in the Hub Information Table (HIT) and the
Group Information Table (GIT). Figure 8.5 shows the 1-to-1
correspondence of hubs with Hub Information Tables, and adapters
with Group Information Tables. The following sections describe these
structures in detail.

SERVER [

ADAPTER 1
(GROUP 1)

HUB1 —] fiﬁr}

ADAPTER 2
(GROUP 2)

HUB2 — ! ADAPTER 3
: (GROUP 1)

Figure 8.5 Required Instances of the HIT and GIT

Version 1.00

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Hub Information Table

The Hub Information Table (HIT), shown below, is a data structure
allocated once for each hub managed. The HMI driver should allocate
the HIT in the adapter data space.

Reserved

HubType

Reservedl
MajorVersion
MinorVersion
ManufacturerID
Reserved2
HubDescriptionPointer
HubVersionPointer
HealthState
HealthTextPointer
HealthDataPointer
HealthDatalLength
GroupsSupported
GroupInfoTablePointer
CapabilitiesBitMap

(the following fields exist only

ConcentratorType
ConcentratorSpeed

dw
dw

[y
(&)
Q.
=

o]

(0) ; 00h
;10h
;11h
;12h
;13h
;14h
;17h
;18h
;1Ch
;20h
;24h
;28h
; 2Ch
; 2Eh
; 30h
; 34h

o

o

=0
[
S
®)

D D D D))))) o~ WD))~ Y

for Token—-Ring HMI)

2 ; 38h
f: ; 3Ah

Version 1.00

Chapter 8 +« Hub Management Interface

Hub Information Table Field Descriptions

Offset

Name

Bytes

Description

00h

Reserved

16

This field is reserved and should not be modified by the
driver. The HMI should initialize these bytes with
zeroes.

10h

HubType

This field identifies the type of hub. Valid hub-type
values are:

1 - 10BaseT repeater
2 - Token Ring concentrator

11h

Reservedl

This field is reserved for future use and should be
initialized to zero.

12h

MajorVersion

This field contains the major version number of the
HIT. Currently this value must be 1.

13h

MinorVersion

This field contains the minor version number of the
HIT. Currently this value must be 0.

14h

ManufacturerID

This field contains an identification number that
uniquely identifies the hardware manufacturer. Refer
to Draft Recommended Practice IEEE 802.1F/D7 May
1, 1991 8.2, Resourcelnfo.ManufacturerID for
information on this number. Typically, this number is
the first 3 bytes of the 802.3 MAC address.

17h

Reserved?2

This byte should be initialized with zero.

18h

HubDescriptionPointer

A pointer to a zero terminated ASCII string that
describes the hub.

1Ch

HubVersionPointer

A pointer to a zero terminated ASCII string that
describes the hub version.

20h

HealthState

This field provides the HealthState managed object
required for the Basic Control package. It contains a
value that identifies the current state of the hub.
Valid values are:

1 - undefined or unknown state

2 - OK, no known failures

3 - repeater/concentrator related failure detected
4 - group related failure detected

5 - port related failure detected

6 - general failure (unspecified type) detected

Version 1.00

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Hub Information Table Field Descriptions
(continued)

HealthState (continued) In the case of multiple failures this field must contain
the value of the highest priority failure. The priority
assignments in high-to-low order are:

repeater/concentrator failure
group failure

port failure

general failure

24h |HealthTextPointer 4 | A pointer to a zero terminated ASCII string that
describes the current health state of the repeater or
concentrator. In the case of multiple failures the string
describes the highest priority failure. The priorities
are the same as in the HealthState description above.

The HealthText may be used as a mechanism to
provide detailed failure information or instructions for
problem resolution. The text strings are manufacturer
specific.

Note: This field satisfies the Basic Control object
requirement for HealthText.

28h |HealthDataPointer 4 |A pointer to a string of data bytes that describes the
operational state of the repeater/concentrator.

The HealthData may be used as a mechanism to
provide detailed failure information or instructions for
problem resolution. The encoding of the data for this
field is manufacturer specific.

Note: This field satisfies the Basic Control object
requirement for HealthData.

2Ch |HealthDataLength 2 |[The length, in bytes, of the HealthData string.

2Eh | GroupsSupported 2 | The number of groups that are installed in the hub.
This field fulfills the requirement for GroupCapacity.
In environments where groups can be added or
removed with power on, this field contains the
maximum number of groups in the hub.

30h | GroupInfoTablePointer 4 | A pointer to the Group Information Table. This field
fulfills the requirement for GroupPortCapacity of the
Basic Control objects. The Group Information Table is
defined following this Hub Information Table
description.

8-26 Version 1.00

Chapter 8 +« Hub Management Interface

Hub Information Table Field Descriptions
(continued)

34h |CapabilitiesBitMap 4 | A bit map indicating which object groups are supported
by the hub. The bits are defined as follows:

10BaseT repeaters (domain "NVL1"):
(LSB) 0 - Basic Control
1 - Performance Monitoring
2 - Address Tracking
3 - Novell Extensions

Token-Ring concentrators (domain "NVL2"):
(LSB) 0 - Basic Control

Note: All "NVL2" performance monitoring and address
tracking objects are maintained by the HSL.

38h |[ConcentratorType 2 | This field is present only for the Token-Ring HMI.
It identifies the type of Token-Ring concentrator.
Possible values are:

1 - Other
2 - Retiming
3 - Non-retiming

3Ah [ConcentratorSpeed 2 | This field is present only for the Token-Ring HMI.
It identifies the speed of the Token-Ring concentrator.
Possible values are:

1 - Other
2 - 4 Mbits/sec
3 - 16 Mbits/sec

Version 1.00 8-27

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Group Information Table

The HMI driver must maintain a Group Information Table (GIT) for
each group supported in the hub. The format of the table is shown
below. The GIT fields are described on the following page.

All GITs for a particular hub must be in contiguous memory. Therefore,
the driver must allocate sufficient memory for the maximum number of
groups in the hub.

In the case of a group that may sometimes be dormant (not part of the
hub), the driver must allocate a GIT for that group whether that
adapter is active or not. Examples of dormant groups would be
additional slave adapters that might be added to a master adapter, or
slave adapters that are installed but are inactive. If groups cannot be
added or removed dynamically, only active adapters need a GIT
allocated.

Installed db *? ; Oh
Slot do 2 ;1h
Ports dw ? ;2h
Description dd 2 ;4h
ObjectIDPointer dd *? ;8h
ObjectIDLength dw ? ;Ch
InstalledTime dd 2 ;Eh
DriverWorkspace db 10 dup (?) ;12h

(the following field exists only for Token-Ring HMI)

CableType dw ? ;1Ch

Version 1.00

Chapter 8 +« Hub Management Interface

Group Information Table Field Descriptions

Offset

Name

Bytes

Description

00h

Installed

1

The driver places a 1 in this field at initialization if the
corresponding group is installed. If the group is removed
from the hub while the system is in operation, the driver
places a 0 in this field to indicate that the group is no longer
active. If the group is re-installed, the field is again set to 1.
Whenever the value of this field changes, the driver must
generate a GroupChange notification.

Note: This field supplies the GroupMap object requirements
of the Basic Control package.

01h

Slot

The slot number is not mandatory but the driver developer is
encouraged to provide meaningful information for this field.
If the slot number is not known, place OFFh in this field.

02h

Ports

The number of ports supported by the group.

Note: This field supplies the GroupPortCapacity object
requirement of the Basic Control package.

04h

Description

A pointer to a zero terminated ASCII string that completely
identifies the group, including full name, version, hardware
type, and any other required information.

08h

ObjectIDPointer

A pointer to an ObjectIdentifier in the form of a 16-bit word
array that is the manufacturer’s authoritative identification
of the group. This value is allocated in the Structure and
Identification of Management Information for TCP/IP-based
Internets (refer to the document of that name listed at the
end of this chapter) enterprises subtree and provides a
straight-forward and unambiguous means for determining
what kind of group is being managed.

0Ch

ObjectIDLength

The length, in bytes, of the Objectldentifier.

OEh

InstalledTime

The value returned by the GetCurrentTime system call when
the group was last installed in the hub.

12h

DriverWorkspace

10

Reserved for driver use.

1Ch

CableType

This field exists only for the Token-Ring concentrator HMI.
It contains a value indicating the cable type of the associated
group. The possible values are:

1-Other 2-STP 3-UTP 4 - Fiber

Note: If the Installed field is non-zero, indicating that the group is installed
and active, then all of the fields GIT must contain meaningful

information.

Version 1.00

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Hub Management MLIDs

The HMI function in the driver is responsible for carrying out hub
management requests. Requests require the driver to access hardware
or manipulate a software implemented feature. In either case, the
driver responds with a completion status. The reset request also
requires that the driver generate a notification.

Management requests are either GET or SET functions. GET functions
request the values of specific statistics or other registers. SET
functions place specific values in control variables or registers, or cause
an action, such as a reset or self-test, to occur.

A driver with management support must also indicate any change in
the operability or configuration of the hardware by allocating a hub
notification ECB, filling it in, and returning it to the hub management
NLM. A notification event occurs when a group is added or removed
from the hub or when the hardware is reset or has failed.

Because there may be multiple management NLMs loaded on the
server, the driver’s hub management capability must be able to process
commands from several different sources at the same time.

The developer has some choice in what level of hub management
capability to provide beyond the required basic control. Novell
recommends that all specified features be supported. When it is not
possible to be fully compliant with the specification, the driver must
indicate lack of support for whatever features are affected as explained.

There are two possible ways to implement HMI functions in ODI
drivers. The developer may implement the HMI procedures as an
additional feature of a standard MLID, or a driver could be developed
that is limited to providing only those functions required by the HMI.

Implementing HMI Support in MLIDs

If the LAN and hub hardware must use the same interrupt, port, or
memory resources, a fully functional driver with HMI support should
be developed.

Drivers supporting hub management must set bit 8 of the MLIDFlags
field in the configuration table. (MLIDFlags is at offset 58h of the
table). Setting this bit allows the hub support layer to locate hub
drivers and automatically bind to them at run time.

Version 1.00

Chapter 8 +« Hub Management Interface

A driver with HMI support must contain all of the routines required by
the ODI specification. Three of these routines will contain the
additional capability that the HMI requires. The affected routines are
DriverInit, DriverISR or DriverPoll, and an additional control routine,
DriverManagement.

Driverlnit. During initialization, the driver must set up and initialize
additional data space for the tables described later in this chapter.

DriverISR / DriverPoll. The board service routine, either DriverISR or
DriverPoll, updates any counters not available directly from the
hardware and generates the required notifications to the management
agent in the event of resets and status changes.

DriverManagement. The MSM checks for a valid management
ProtocolID in the hub command ECB then passes the ECB to the hub’s
DriverManagement routine if one is available (indicated by the
DriverManagementPtr field in the DriverParameterBlock). This routine
should handle all management requests rather than extracting them
from the DriverSend routine.

Implementing HMI Only

Hub-management-only drivers may be created by adding the HMI
capabilities to a fully functional driver. Any driver routines (or portions
of routines) that are not needed can be stubbed out. This HMI-only
driver should be loaded specifying the appropriate hardware interface
parameters for the hub (IO port, interrupt, memory address, etc.).

Managing External Hubs

Novell recommends that drivers managing external hubs cache the
state of the hub in server memory. This will allow management
requests to be satisfied without affecting the server’s performance. The
cache could be updated periodically by polling the remote device to
provide data for GET requests. SET requests should be checked for
validity prior to being transferred to the remote device and report that
the action has occurred without waiting for confirmation from the
device (a process similar to lying sends).

The use of the EventServiceRoutine to indicate the completion of the
request allows the driver to operate in an asynchronous manner if the
management request cannot be fulfilled immediately. This capability
allows for proxy management of hubs external to the server (for
example, a repeater attached to the server via a serial port). In this
case, the driver should be prepared to have multiple management
requests outstanding at the same time.

Version 1.00

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

HMI Mode Selection

Note:

The custom command line options described in this section do not apply
to Token-Ring HMI drivers.

Many hardware implementations require the driver to at least partially
process every packet on the network to maintain hub statistics. When
there are very high packet rates, server CPU utilization to maintain the
statistics is significant. When this limitation exists, the driver may use
a custom-defined command line option as described below to allow the
supervisor to run the hub in either the full-featured mode or in a
stripped-down mode.

The driver may define the HUBMGT custom command line keyword
with two possible mode settings: STANDARD and BASIC, as described
in Chapter 3. The STANDARD mode is the default mode. In this
mode, the driver maintains all objects it is capable of supporting. In
BASIC mode the driver maintains only the Basic Control objects and
any other objects that can be maintained with minimal impact on
server CPU loading. Objects that are not supported in the BASIC mode
return "not supported" in ObjectStatus.

Version 1.00

Chapter 8 +« Hub Management Interface

Command Processing

Commands and responses are passed between the hub management
NLM and the HMI driver as command blocks. As a matter of
convenience and simplicity, these command blocks are packaged in
specialized Hub Command ECBs and passed using a mechanism similar
to the one used to pass frames between a protocol stack and a driver.
Consequently, hub management NLMs look and behave like protocol
stacks from the point of view of the driver.

The Hub Command ECB is structured such that each command can
access multiple objects from the same hub, group, and port. The ECB
is used to pass object values between the management NLM and the
driver.

The driver must return an ObjectStatus for each object accessed by the
Hub Command ECB. The status indicates the results of the operation
for each object. For example, if an attempt to access an unsupported
object is made, the driver must return the not supported (2) status for
that object. A failure when accessing one object does not affect accesses
to other objects made in the same Hub Command ECB.

Hub Command ECB

The format of the Hub Command ECB is shown below. The functions
of some of the fields are different from the standard ECB format to
accommodate required hub command parameters.

Link dd ? ;00h
BLink dd ? ;04h
Status dw ? ;08h
ESRAddress dd ? ; OAh
LogicallID dw ? ; OEh
ProtocolID db 6 dup(?) ;10h
BoardNumber dd ? ;16h
Group dw ? ; 1Ah
Port dw ? ;1Ch
Function dw ? ; 1Eh
DriverWorkSpace dd ? ;20h
ManagerWorkSpace db 8 dup(?) ;24h
PacketLength dd ? ; 2Ch
Domain db 4 dup (?) ; 30h
Reserved dw ? ; 34h
ObjectCount dw ? ; 36h
ObjectIdentifier dw ? ;38h
ObjectReserved db ? ; 3Ah
ObjectStatus db ? ; 3Bh
ObjectValue db 8 dup(?) ; 3Ch

Version 1.00

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Hub Command ECB Field Descriptions

Offset

Name

Bytes

Description

00h

Link

4

This field contains a forward link to another ECB. The
LSL, hub management NLM, and driver may use this
field while the ECB is in their possession.

04h

BLink

This field contains a backward link to another ECB and
may be used to create a doubly linked list of ECBs.

08h

Status

This field should always be set to 0 upon completion of
command processing.

0Ah

ESRAddress

This field contains a pointer to a service routine which
the driver calls when the specified function has been
completed.

OEh

LogicallD

Raw send, OxFFFFh.

10h

ProtocolID

Contains the value ' HUBMGR’ which is used to identify
the ECB as a Hub Command ECB.

16h

BoardNumber

The logical board number of the hub to be accessed.
There is a 1-to-1 correspondence between drivers with
HMI and hubs.

1Ah

Group

Group to be accessed. Group numbers are assigned from
0 through the value of GroupsSupported - 1
(the GroupsSupported value is in the HIT).

1Ch

Port

Port to be accessed. Port numbers are assigned from 0
through Ports - 1 (Ports is in the GIT).

1Eh

Function

This field identifies the command function to be executed:
GET (0) or SET (1).

20h

DriverWorkSpace

This field is reserved for use by the driver.

24h

ManagerWorkSpace 8

This field is reserved for use by the hub management
NLM and must not be modified by either the LSL or the
driver.

2Ch

PacketLength

Always 0.

30h

Domain

This field contains a 4-byte character string that specifies
the domain. The domain defines the meaning of the
object ID numbers. The following domains are currently
defined.

"NVL1" domain = 10BaseT repeater objects
"NVL2" domain = Token-Ring concentrator objects

Other domains may be defined that reuse object ID
numbers. This facilitates vendor unique extensions to the
HMI.

34h

Reserved

This field is always zero.

Version 1.00

Chapter 8 +« Hub Management Interface

Hub Command ECB Field Descriptions

(continued)

36h

ObjectCount

This field contains the count of the number of objects that
must be accessed for this ECB. For each object accessed,
there is a set of Objectldentifier, ObjectReserved,
ObjectStatus, and ObjectValue fields. This field will
never be zero.

38h

Objectldentifier

This is the object ID number assigned to the managed
object to be accessed (refer to the Object Identifier tables
earlier in this chapter).

3Ah

ObjectReserved

This field is always zero.

3Bh

ObjectStatus

The HMI driver returns the result of the requested
operation for the specified object in this field. All objects
in a single ECB should be processed independently so
that a failure for one object does not affect the operations
for the other objects. Result status values are:

0 - successful

1 - value was too big for object

2 - specified object is not supported

3 - value was out of range for object

4 - a SET function was specified for a read-only object
5 - all other errors

3Ch

ObjectValue

For a SET command, this field contains the object value
(placed here by the NLM) that will perform the desired
action. In a GET command, the driver fills this field with
the value from the object specified in the Objectldentifier
field of the Hub Command ECB.

Most object values are only 4 bytes. This field is filled
beginning at 3Ch, therefore 4 byte object values do not
use bytes 40h thru 43h.

44h

ObjectIdentifier2
ObjectReserved2
ObjectStatus2
ObjectValue2

O = =N

If the Hub Command ECB accesses multiple objects
(i.e. ObjectCount > 1), the Objectldentifier,
ObjectReserved, ObjectStatus, and ObjectValue fields are
repeated for each object.

Version 1.00

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Hub Command Sequence

The sequence of events that sends a management command to the
driver’s HMI function is:

1. A hub management request is received by the network management
agent and passed to the appropriate hub management NLM.

2. The hub management NLM examines the request and determines
which driver should process the request. The management NLM
constructs a Hub Command ECB with ProtocolID = HUBMGR,
LogicallD = 0xFFFFh (raw send), Domain = NVL1 or NVL2, and
Function = SET or GET. The ObjectValue (for SET commands) and
Objectldentifier fields are filled in. Because more than one request
may be sent in an ECB, there may be multiple ObjectValue,
Objectldentifier, ObjectReserved, and ObjectStatus fields.

3. The Hub Command ECB is passed to the driver via the HSL, LSL,
and MSM code paths.

4. The MSM determines whether the ECB is a valid management ECB
by examining the ProtocolID field. ECBs containing management
requests are passed to the DriverManagement control routine.

5. A typical DriverManagement routine validates the command,
processes the request, and sets the ObjectStatus field to the
appropriate value. If either the Domain or ObjectID is not
supported, the "not supported" command status must be returned.

The pseudocode at the end of this chapter shows a general example of
the HMI command processing functions within the driver.

Design Tips and Notes

In most cases management requests will be fulfilled immediately by the
driver. Interrupts will be disabled and should remain disabled during
request processing. The driver developer must guard against
reentrancy if interrupts are enabled.

If a request cannot be completed immediately (within a few hundred
microseconds), the driver can schedule an AES callback process to
handle the request. This may be true for the Reset and Self-Test
actions.

Version 1.00

Chapter 8 +« Hub Management Interface

Notification Processing

The driver’s HMI function must pass notification up to the hub support
layer if there is any change in the operational status of the hub being
managed. The hub support layer directs the notification to the
management agents registered with the driver.

Notification Types

Notification must be provided for each of the defined changes in status
described below. Prior to generating a notification the driver must
update the related information in the HIT or the GIT. The following
tables list which fields must be updated prior to sending a notification.
A description of each notification type follows the tables.

Notification ID | Table Domain Update Fields

HealthChange 1 |HIT |[NVL1 or NVL2 |HealthState
HealthTextPointer
HealthDataPointer
HealthDataLength

GroupChange 2 |GIT |NVL1 or NVL2 |Installed

HubReset 3 [HIT |NVL1 or NVL2 [HealthState
HealthTextPointer
HealthDataPointer
HealthDataLength

LoopbackRecovery 4 |N/A |NVL2 only N/A

Reserved 5-9

SourceAddressChange| 10 |[N/A |NVLI1 only N/A

Health Change Notification

This notification conveys information related to the operational state of
the hub. The HMI driver must generate this notification whenever a
change in the health state of any part of the hub is detected.

Group Change Notification

This notification is generated whenever a group is removed from or
added to the hub while the system is operating. If removal and
addition of adapters is not allowed while the system remains in
operation, this notification should never be generated.

Version 1.00

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Reset Notification

The HMI driver must generate this notification at the completion of a
hub reset. The reset notification is sent when the hub is reset as a
result of a power-on condition or upon completion of a reset request.

LoopbackRecovery Notification

A "LoopbackRecovery" condition is when the normal connection between
2 adapters fails and an alternate route is used for connecting the 2
boards. For example, in a configuration where the ring-in port is
connected to the ring-out port (as a redundant measure), if a daisy-in
and daisy-out connection break, the ring-in and ring-out ports will be
used for transmitting information in the ring. This is a condition
performed by the hardware and not in control of the user. However,
they must provide for the redundant measure in order for this
mechanism to work. If a vendor does not provide support for this
feature, there is no need to support the notification message as it will
never occur.

SourceAddressChange

This notification is generated whenever a new source address is
observed for a given port and the NotifySourceAddrChange Novell
Extensions object is enabled (set to 2) for that port. The condition that
triggers this trap is identical to that of LastSourceAddress and
SourceAddressChanges in the NVL1 domain.

Notification Generation Sequence

Note:

A notification is generated in a manner similar to the way a received
frame is processed. A receive ECB is obtained, the BoardNumber and
ProtocollD are copied into the ECB along with the NotificationID, the
Hub Information Table pointer, the GroupNumber and PortNumber.
The ECB is then returned for processing. The ECB is routed to all hub
management NLMs bound to the driver. Some fields of the ECB that
are normally used by the driver for network frame processing are
ignored in notification generation. The space normally defined as the
ImmediateAddress and DriverWorkSpace is used to pass the
NotificationID, GroupNumber, PortNumber, and InfoTablePointer.

The driver must obtain the receive ECB for the notification by calling
the MSMAllocateRCB routine. To return the notification ECB, the
driver should use the MSMReturnNotificationECB / MSMServiceEvents
combination or the MSMFastReturnNotificationECB routine. Chapter 7
describes these procedures.

Version 1.00

Chapter 8 +« Hub Management Interface

Example

If no ECB is available for the notification, the notification is not made.
It is the responsibility of the upper layers to ensure that they receive
notification information (using a GET command) if they require it.

HubResetNotification proc

mov esi, 4

call MSMAllocateRCB ; Get notification ECB

L]

E (Fill in all required notification information)

L]

mov esi, ECBPtr ; Point to the ECB
MSMFastReturnNotificationECB ; Return the ECB directly to

the management application

Notification ECB

The hub notification ECB format is shown below. Those fields that the
driver must handle in generating a notification are explained in the
paragraphs that follow.

Link dd 2 ;00h

BLink dd 2 ;04h

Status dw ? ; 08h

ESRAddress dd 2 ; OAh

LogicallD dw ? ; OEh
* ProtocolID do 6 dup (?) ;10h ’HUBMGR’
* BoardNumber dd 2 ;16h from config table
* NotificationID dw ? ;1Ah notification ID
* GroupNumber dw ? ; 1Ch group affected
* PortNumber dw ? ; 1Eh port affected
* InfoTablePointer dd 2 ;20h HIT pointer

ManagerWorkspace db 8 dup (?) ;24h

Reserved dd 4 dup (0) ; 2Ch

Domain do 4 dup (?) ; 3Ch

* The driver must fill in these fields before passing the
ECB to the LSL

Version 1.00

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Notification ECB Field Descriptions

Offset

Name

Bytes

Description

00h

Link

4

This field contains a forward link to another ECB.

04h

BLink

4

This field contains a backward link to another ECB.

08h

Status

2

This field should not be modified. The LSL uses the
Status field to indicate the current state of the ECB.

0Ah

ESRAddress

This field should not be modified. The LSL routes the
ECB to the proper management protocol by calling the
address in this field.

O0Eh

LogicallD

This field should not be modified. The LSL places the
target management protocol’s logical number in this
field.

10h

ProtocolID

The protocol ID that all drivers must use for sending
notification ECBs is the six byte string ' HUBMGR’. It
should be declared as:

HubProtocolID db ’HUBMGR'

16h

BoardNumber

This is the logical board number from the
configuration table of the driver generating the
notification.

1Ah

NotificationID

The driver loads the notification identifier value in this
field. The notification ID values are specified in the
Notification Types section of this chapter.

1Ch

GroupNumber

The group number associated with the notification, if
applicable.

1Eh

PortNumber

The port number associated with the notification, if
applicable.

20h

Reserved

This field is reserved. Its value should be initialized
to 1. (20h = 01h, 21h..23h = 00h)

24h

ManagerWorkspace

This field is reserved for use by the management NLM.

2Ch

Reserved

16

This field is reserved. These bytes should be initialized
to zero.

3Ch

Domain

This field contains a 4-byte character string that
specifies the domain. The domain defines the meaning
of the notification ID numbers. The following domains
are currently defined:

"NVL1" domain = 10BaseT repeaters
"NVL2" domain = Token-Ring concentrators

Other domains may be defined that use the same
notification ID numbers differently. This will allow for
vendor-unique extensions to the HMI.

Version 1.00

Chapter 8 +« Hub Management Interface

Hub Management Pseudocode

Three driver routines contain the additional capability that the HMI
specification requires. The routines are:

® Driverlnit

¢ DriverISR (or DriverPoll)
* DriverManagement

Driverlnit

During initialization, the driver must allocate and initialize the
additional data space for the tables specified in this chapter.

Driverlnit proc

Set up Hub Information Table

Allocate memory for Group Information Tables

Allocate memory for port/group software counters if counters not available in hardware
Initialize port counters (if implemented in software)

Initialize Group Information Tables

Initialize the repeater/concentrator hardware

DriverISR or DriverPoll

The board service routine, either DriverISR or DriverPoll, updates any
counters not available directly from the hardware and generates the
required notifications to the management agent in the event of resets
and status changes.

DriverISR proc

Update HIT, GIT, and counters

IF health change
generate notification
ENDIF

Version 1.00 8- 41

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

DriverManagement

On Entry

On Return

Description

ESI Pointer to the management ECB containing the request
EBP | Pointer to the Adapter Data Space
EBX | Pointer to the Frame Data Space

EAX | 00000000h = Success; ECB relinquished
00000001h = Success; ECB queued
FFFFFF88h = No such handle; ProtocollD not supported

To avoid Management ECBs from getting queued in the send queue,
this control routine has been added to handle all management requests
(rather than extracting them from the DriverSend routine).

The MSM checks the ProtocolID field in the ECB. If the first byte is an
ASCII letter greater than 40h, it is a valid management ProtocollD.
The MSM will then pass the ECB to the hub’s DriverManagement
routine if one is available (indicated by the DriverManagementPtr field
in the DriverParameterBlock).

The DriverManagement routine should scan the whole ProtocollD to
verify that the management request is valid before processing it.
(the ProtocolID is "HUBMGR" for Hub management requests.) The
routine must also verify that each requested Domain / ObjectID
combination is supported. Once the request is processed, the
ObjectStatus field should be set to the appropriate value (see the "Hub
Command ECB field descriptions" earlier in this chapter).

If the routine must respond asynchronously to the management request,
the driver should queue the ECB (in this case, the driver must manage
its own queue) and return a status of 00000001h in EAX. When the
queued request is complete, the driver must make a call to the event
service routine specified in the ESRAddress field of the ECB as follows:

mov esi, PtrToECB ;jget ptr to command ECB
push esi ;jpass on stack

call [esi] .ESRAddress ;call Event Service Routine
add esp, 4 ;jclean up stack

Version 1.00

Chapter 8 +« Hub Management Interface

DriverManagement Pseudocode

IF ProtocollD is not valid

RETURN FFFFFF88h

FOR each object

IF Domain-ObjectID combination is not supported
ObjectStatus = 2 (not supported)
ELSE
IF SET function
IF legal value
ObjectStatus = 0 (success)
set specified object
ELSE
ObjectStatus = appropriate error code
ENDIF
ELSE

ObjectStatus = 0 (success)
ObjectValue = get specified object value

ENDIF
ENDIF

CONTINUE to next object

RETURN 0

Version 1.00

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

References

ISO 7498:1984, Information Processing Systems - Open Systems Interconnection - Basic Reference Model

ISO 7498-3:1989, Information Processing Systems - Open Systems Interconnection - Basic Reference
Model - Part 3:Naming and Addressing

ISO 7498-4:1989, Information Processing Systems - Open Systems Interconnection - Basic Reference
Model - Part 4:Management Framework

ISO 8824:1990, Information Technology - Open Systems Interconnection - Specification of Abstract Syntax
Notation One (ASN.1)

ISO 8824:1990, Information Technology - Open Systems Interconnection - Specification of Basic Encoding
Rules for Abstract Syntax Notation One (ASN.1)

ISO/IEC 8802-3:1990, Information Processing Systems - Local Area Networks - Part 3: Carrier Sense
Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications

ISO/IEC 10040, Information Processing Systems - Open Systems Interconnection - Systems Management
Overview (to be published)

ISO/IEC 10164-1, Information Processing Systems - Open Systems Interconnection - Management
Information Services - System Management - Part 1:0bject Management Function

ISO/IEC 10165-1, Information Processing Systems - Open Systems Interconnection - Management
Information Services - Structure of Management Information - Part 1:Management Information Model

ISO/IEC 10165-2, Information Processing Systems - Open Systems Interconnection - Management
Information Services - Structure of Management Information - Part 2:Definition of Management Information

ISO/IEC 10165-4, Information Processing Systems - Open Systems Interconnection - Management
Information Services - Structure of Management Information - Part 4:Guidelines for the Definition of
Managed Objects (to be published)

IEEE Standard 802-1990 Overview and Architecture

IEEE Standard 802.3i - 1990, System Considerations for Multisegment 10Mb/s Baseband Network (section
13) - Twisted-Pair Medium Attachment Unit (MAU) and Baseband Medium, Type 10BaseT (section 14)

Draft Supplement to IEEE Standard 802.3, Layer Management for 10Mb/s Baseband Repeaters,
Section 19

Draft Recommended Practice |IEEE 802.1F, Guidelines for the Development of Layer Management
Standards

K. McCloghrie and D. McMaster, Definitions of Managed Objects for IEEE 802.3 Repeater Devices, Internet
Draft Request for Comments, July, 1991

M. Rose and K. McCloghrie, Structure and Identification of Management Information for TCP/IP-based
Internets, Internet Working Group Request for Comments 1155, May 1990

8 — 44 Version 1.00

